Рычаги повсюду вокруг нас и внутри нас, поскольку основные физические принципы рычага - это то, что позволяет нашим сухожилиям и мышцам двигать нашими конечностями. Внутри тела кости действуют как балки, а суставы - как точки опоры.
Согласно легенде, Архимед (287-212 гг. До н.э.) однажды сказал, что сказал: «Дайте мне место, чтобы я встал, и я перенесу Землю с ним», когда он раскрыл физические принципы за рычагом. Хотя для того, чтобы действительно изменить мир, потребовалось бы огромное рывок, но это утверждение является верным свидетельством того, как оно может дать механическое преимущество. Знаменитая цитата приписана Архимеду более поздним писателем, Паппусом Александрийским. Вероятно, Архимед никогда не говорил этого. Однако физика рычагов очень точная.
Как работают рычаги? Каковы принципы, которые управляют их движениями?
Как работают рычаги?
Рычаг это простая машина который состоит из двух компонентов материала и двух рабочих компонентов:
- Балка или сплошной стержень
- Точка опоры или опорная точка
- Входная сила (или усилие)
- Выходная сила (или нагрузка или сопротивление)
Луч размещен так, что некоторая его часть упирается в точку опоры. В традиционном рычаге точка опоры остается в неподвижном положении, в то время как сила приложена где-то вдоль длины луча. Затем луч поворачивается вокруг точки опоры, прикладывая выходную силу к какому-либо объекту, который необходимо переместить.
Древнегреческий математик и ранний ученый Архимед, как правило, приписывают Сначала раскрыть физические принципы, регулирующие поведение рычага, которые он выразил в математической условия.
Основные концепции работы рычага заключаются в том, что, поскольку он представляет собой сплошную балку, то крутящий момент в один конец рычага будет проявляться как эквивалентный крутящий момент на другом конце. Прежде чем приступить к интерпретации этого как общего правила, давайте рассмотрим конкретный пример.
Балансировка на рычаге
Представьте себе две массы, балансирующие на балке через точку опоры. В этой ситуации мы видим, что можно измерить четыре ключевых величины (они также показаны на рисунке):
- M1 - масса на одном конце опоры (входная сила)
- - Расстояние от точки опоры до M1
- M2 - масса на другом конце точки опоры (выходная сила)
- б - Расстояние от точки опоры до M2
Эта основная ситуация освещает отношения этих различных величин. Следует отметить, что это идеализированный рычаг, поэтому мы рассматриваем ситуацию, когда абсолютно нет трения между балкой и точкой опоры, и что нет никаких других сил, которые вывели бы равновесие из равновесия, как ветер.
Эта установка является наиболее знакомой из основных ВесыИспользуется на протяжении всей истории для взвешивания предметов. Если расстояния от точки опоры одинаковы (математически выражены как = б) тогда рычаг будет уравновешиваться, если веса одинаковы (M1 = M2). Если вы используете известные веса на одном конце весов, вы можете легко определить вес на другом конце весов, когда рычаг выровняется.
Ситуация становится намного интереснее, конечно, когда не равно б. В этой ситуации Архимед обнаружил, что существует точное математическое соотношение - на самом деле эквивалентность - между произведением массы и расстоянием с обеих сторон рычага:
M1 = M2б
Используя эту формулу, мы видим, что если мы удвоим расстояние на одной стороне рычага, то для его балансировки потребуется вдвое меньше массы, например:
= 2 б
M1 = M2б
M1(2 б) = M2б
2 M1 = M2
M1 = 0.5 M2
Этот пример был основан на идее масс, сидящих на рычаге, но масса может быть заменено чем-либо, что оказывает на рычаг физическую силу, в том числе на него давит человеческая рука. Это начинает давать нам базовое понимание потенциальной силы рычага. Если 0,5 M2 = 1000 фунтов, тогда становится ясно, что вы можете сбалансировать это с весом в 500 фунтов на другой стороне, просто удвоив расстояние рычага на этой стороне. Если = 4б, тогда вы можете сбалансировать 1000 фунтов только с силой 250 фунтов.
Именно здесь термин «рычаг» получает свое общее определение, часто применяемое далеко за пределами физики: использование относительно меньшее количество власти (часто в форме денег или влияния), чтобы получить непропорционально большее преимущество на результат.
Типы рычагов
При использовании рычага для выполнения работы мы концентрируемся не на массах, а на идее воздействия сила на рычаге (называется усилие) и получить выходную силу (называется Загрузка или сопротивление). Так, например, когда вы используете лом для того, чтобы приподнять гвоздь, вы прикладываете усилие, чтобы генерировать выходное сопротивление, которое и вытягивает гвоздь.
Четыре компонента рычага можно объединить тремя основными способами, в результате чего получаются три класса рычагов:
- Рычаги класса 1: Как и весы, рассмотренные выше, это конфигурация, в которой точка опоры находится между входными и выходными силами.
- Рычаги класса 2: сопротивление находится между входной силой и точкой опоры, например, в тачке или открывалке для бутылок.
- Рычаги класса 3: Точка опоры находится на одном конце, а сопротивление - на другом, с усилием между ними, например, с помощью пинцета.
Каждая из этих различных конфигураций имеет различные значения для механического преимущества, обеспечиваемого рычагом. Понимание этого включает разрушение «закона рычага», который впервые был формально понят Архимед.
Закон рычага
Основной математический принцип рычага заключается в том, что расстояние от точки опоры можно использовать для определения того, как входные и выходные силы связаны друг с другом. Если взять более раннее уравнение для уравновешивания масс на рычаге и обобщить его на входную силу (Fя) и выходная сила (Fо), мы получаем уравнение, которое в основном говорит, что крутящий момент будет сохраняться при использовании рычага:
Fя = Fоб
Эта формула позволяет нам генерировать формула для «механического преимущества» рычага, которое представляет собой отношение входной силы к выходной силе:
Механическое преимущество = / б = Fо/ Fя
В предыдущем примере, где = 2бмеханическое преимущество составляло 2, что означало, что усилие в 500 фунтов может быть использовано для уравновешивания сопротивления в 1000 фунтов.
Механическое преимущество зависит от соотношения в б. Для рычагов класса 1 это можно настроить любым способом, но рычаги классов 2 и 3 накладывают ограничения на значения и б.
- Для рычага класса 2 сопротивление между усилием и точкой опоры означает, что < б. Следовательно, механическое преимущество рычага класса 2 всегда больше 1.
- Для рычага класса 3 усилие между сопротивлением и точкой опоры означает, что > б. Следовательно, механическое преимущество рычага класса 3 всегда меньше 1.
Настоящий рычаг
Уравнения представляют собой идеализированная модель о том, как работает рычаг. Есть два основных предположения, которые входят в идеализированную ситуацию, которая может отбросить вещи в реальном мире:
- Луч совершенно прямой и негибкий
- Точка опоры не имеет трения с балкой
Даже в лучших реальных ситуациях это только приблизительно верно. Точка опоры может быть разработана с очень низким трением, но она почти никогда не будет иметь нулевого трения в механическом рычаге. Пока луч соприкасается с точкой опоры, возникает некоторое трение.
Возможно, еще более проблематичным является предположение о том, что луч является совершенно прямым и негибким. Вспомните более ранний случай, когда мы использовали вес 250 фунтов, чтобы уравновесить вес 1000 фунтов. Точка опоры в этой ситуации должна была бы выдержать весь вес без провисания или поломки. Это зависит от используемого материала, является ли это предположение разумным.
Понимание рычагов - это полезный навык во многих областях, от технических аспектов машиностроения до разработки собственного лучшего режима бодибилдинга.